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Fine Print

This work is joint with:

Sebastian Casalaina-Martin (University of Colorado at Boulder);

Filippo Viviani (Roma Tre).

Alternative approaches to results are given by:

the Chai-Faltings-Mumford theory of Uniformization (Aleexev and
Nakamura);

the theory of the Presentation Scheme (Oda and Seshadri).

We will work over the complex numbers k := C.
(But ask if you are curious about a more general k !)
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The Jacobian variety

To a non-singular curve X of genus g, one can associated the
Jacobian:

Jd
X =the Jacobian variety,

=the moduli space of (degree d ) line bundles

=a complex torus.
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The Torelli Theorem

The Jacobian is a basic tool for studying X .

Theorem (Torelli)
If

J0(X ) ∼= J0(Y ) (with polarization),

then
X ∼= Y .
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Question

Question (Mayer and Mumford, 1964)
1 Is there an analogue when X is nodal?
2 If yes, do they fit into a family over Mg?

Will focus on on Question 1 for a specific curve.

Only generalize Jd
X for d = 0.

Write J
0
X for analogue of J0

X .
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A Genus 3 Curve

Draw Picture of Genus 3 curve whose dual graph is 2 vertices
joined by 4 edges.
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Attempt One

Form the moduli space of degree 0 line bundles!

Fails! This does not give a well-behaved scheme.

In genus 3 example, have new invariant:

bidegree of L = (deg L|X1
, deg L|X2

)
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Attempt One: Moduli Space

Draw infinite collection of copies of ⊕3
i=1C

∗ indexed by possible
bidegrees.
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Attempt One: Problems

The problems are:

the moduli space is NOT of finite type;

the moduli space is NOT universally closed;

more problems in a family (NOT separated).
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Attempt Two

Construct as a GIT quotient of a Quot scheme!

Assume d >> 0. Form

U = {(L; s1, . . . , sr ) : s1, . . . , sr ∈ H0(L) basis},

and the natural compactification

Quot(X ,Or ) ⊃ U.
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Attempt Two: Construction

Have (linearized) action of SLr given by change of basis.

Form GIT quotient

J
d
X := Quot(X ,Or )// SLr .
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Attempt Two: Theorem

Hard part: How to interpret points of J
d
X ?

Theorem (Caporaso-Pandharipande-Simpson)

The scheme J
d
X is a coarse moduli space of slope-stable rank 1,

torsion-free sheaves.

Lots of generalizations. I know 10(!) other papers on this subject.
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Attempt Two: Example

In genus 3 example, J
0
(X ) has 3 irreducible components.

Parameterizes line bundles of bidegree

(−2, 2), (−1, 1), (0, 0), (1,−1), (2,−2).

and their degenerations.

Question

What is the local structure of J
0
X at I := f∗(OX ′(−2,−2))? How many

local components?
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Local Structure

Proposition (Example)
There is isomorphism

the completed local ring of J
0
X at I ∼= RH ,

where

H := Aut(I)/{scalars}

=(C∗ × C
∗)/C

∗

acting on

R :=
⊗̂4

i=1
C[[ui , vi ]]/(ui vi)

=the miniversal deformation ring for I.
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Local Structure: Proposition

Proposition
The group action is

ui
(a,b)
7−→ ab−1ui ,

vi
(a,b)
7−→ ba−1vi .

Proof.
There are three inputs:

Luna’s Slice Theorem shows an action exists;

Rim’s Theorem shows action is unique;

compute using deformation theory.
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Local Structure: Main Theorem

Theorem (C.-M., K., V.)
Let I be a polystable rank 1, torsion-free sheaf on a nodal curve X that
fails to be locally free at a set Σ ⊂ X. Then the completed local ring of

J
d
(X ) at I is isomorphic to a power series ring over the completed

cographic ring of ΓX (Σ).
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Local Structure: Example

In the example, the theorem states that the ring is generated by

x1y2, x1y3,

x1y4, x2y3,

x2y4, x3y4,

y1x2, y1x3,

y1x4, y2x3,

y2x4, y3x4,

which correspond to oriented cycles.
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Local Structure: Local Components

How many local components in the genus 3 example? The answer is:

14 = 8 + 6.

Which correspond to totally cyclic orientations.
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End

Thank you!
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